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Figure 1: Overview of our UAV-Flow benchmark. It consists of a large-scale real-world dataset
for language-conditioned UAV imitation learning, featuring multiple UAV platforms, diverse en-
vironments, and a wide range of fine-grained flight skill tasks. To enable systematic experimental
analysis under the Flow task setting, we additionally provide a simulation-based evaluation protocol
and deploy VLA models on real UAVs. To the best of our knowledge, this is the first real-world
deployment of VLA models for language-guided UAV control in open environments.

Abstract

Unmanned Aerial Vehicles (UAVs) are evolving into language-interactive plat-
forms, enabling more intuitive forms of human-drone interaction. While prior
works have primarily focused on high-level planning and long-horizon navigation,
we shift attention to language-guided fine-grained trajectory control, where UAVs
execute short-range, reactive flight behaviors in response to language instructions.
We formalize this problem as the Flying-on-a-Word (Flow) task and introduce UAV
imitation learning as an effective approach. In this framework, UAVs learn fine-
grained control policies by mimicking expert pilot trajectories paired with atomic
language instructions. To support this paradigm, we present UAV-Flow, the first
real-world benchmark for language-conditioned, fine-grained UAV control. It in-
cludes a task formulation, a large-scale dataset collected in diverse environments, a
deployable control framework, and a simulation suite for systematic evaluation. Our
design enables UAVs to closely imitate the precise, expert-level flight trajectories of
human pilots and supports direct deployment without sim-to-real gap. We conduct
extensive experiments on UAV-Flow, benchmarking VLN and VLA paradigms.
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Figure 2: Analysis of traditional UAV VLN and our Flow. Left: VLN tasks aim to reach distant
goals by planning long-horizon paths from instructions. Right: Flow focuses on executing short-range,
language-guided trajectories toward visually grounded targets within the current scene.

Results show that VLA models are superior to VLN baselines and highlight the
critical role of spatial grounding in the fine-grained Flow setting. As far as we are
aware, we present the first real-world deployment of a VLA system for language-
conditioned UAV control in open environments. Data, code, and real-world flight
demos are available on https://prince687028.github.io/UAV-Flow,

1 Introduction

Unmanned Aerial Vehicles (UAVs), as the most popular low-altitude flying platforms, offer new
perspectives for visual perception and assist humans in a wide range of tasks. With automated
control algorithms [[1, 2| 13, 4], UAV operation has evolved from a skill requiring expertise to an
accessible, beginner-friendly technology. Today, a user can purchase a drone in the morning and
capture cinematic

footage by the afternoon. Beyond automation, the rise of large-scale Al models invites a new question:
"Can UAV manipulation become even more intuitive through language interaction?" Imagine simply
saying, “fly around me,” and the UAV understands and acts accordingly. This shift from automation
to intelligence marks a new frontier for human-drone interaction.

To enable language-interactive UAV control, recent research [5, 1617, 18,19] has adapted vision-language
navigation (VLN) tasks from ground robots [[10} [11} 12} [13}[14] to aerial platforms, typically using
simulated environments [15 [16]] where UAVs interpret language instructions to search for targets
or reach distant destinations, as illustrated in Fig. 2| These efforts primarily focus on high-level
reasoning capabilities [[17, [18] [19, 20] such as path planning and goal-directed navigation. They
assume that low-level control, which executes short atomic flight behaviors such as moving between
waypoints or responding to simple instructions, is already reliable for Al models. This assumption
often holds for ground robots, but not for UAVs, which face the complexities of 3D flight, including
high degrees of freedom and dynamic perspectives. Thus, language-guided low-level control emerges
as a critical yet underexplored direction toward enabling intelligent UAV systems.

To operationalize Flow, we formulate UAV imitation learning, where the UAV learns to execute
atomic language instructions by mimicking human pilot trajectories in real-world environments. As
illustrated in Fig.|l} we introduce UAV-Flow, a benchmark for imitation learning of UAV control
conditioned on language instructions, built around the Flow paradigm. It comprises a formal task
definition, the first real-world dataset for language-conditioned UAV imitation learning, a real-UAV-
deployable control framework, and a simulation suite for systematic evaluation.

To enable effective UAV imitation learning, we formulate the Flow task as mapping atomic language
instructions to executable UAV actions, grounded in two core capabilities: motion intent understand-
ing, which interprets low-level flight semantics (e.g., “move 5 meters at a 45-degree angle”), and
spatial context grounding, which links spatial references in language to visual observations (e.g., “fly
to the right side of the marker”). Based on these capabilities, we define two corresponding task types
that separately evaluate motion-level and perception-grounded execution.
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Figure 3: Visualization of Flow tasks. Given the same instruction, human pilots execute diverse
real-world trajectories. We show 2D flight paths over aerial scenes and reconstructed 3D trajectories.

To accurately capture the flexible and diverse flight behaviors exhibited by expert pilots, we depart
from conventional simulator-based data collection paradigms and construct the UAV-Flow dataset
directly in real-world environments. To the best of our knowledge, this is the first real-world dataset
explicitly designed for language-conditioned UAV imitation learning. Moreover, it enables accurate
imitation and direct deployment without a sim-to-real gap. Data is collected by professional pilots
across three large-scale campus environments selected for their architectural diversity and spatial
complexity. During collection, pilots perform flights by following language instructions within
the visual context. We record synchronized UAV onboard video and corresponding 6-DoF state
trajectories, resulting in comprehensive language-vision-action sequences.

While UAV-Flow provides a real-world foundation, deploying large-scale models onboard remains
challenging. To address this, we propose a ground-drone collaborative framework, where the UAV
streams state and visual inputs to a ground station for inference and receives control feedback with
low latency impact. Additionally, to support systematic evaluation and controlled comparisons, we
construct a simulation-based dataset under the same Flow task formulation.

We establish a comprehensive baseline benchmark for UAV-Flow by adapting representative methods
from two paradigms: traditional VLN approaches [7, |10} 21]] for high-level planning, and recent VLA
methods [22, 23] designed for reactive control. These baselines are systematically transferred and
evaluated under the Flow setting. Our experiments span both simulation and real-world deployments,
enabling controlled comparisons and practical assessments. Results show that VLA models consis-
tently outperform VLN models in fine-grained control, achieving more stable, deployable behaviors
that align with the demands of real-world UAV systems.

2 UAV-Flow Benchmark

We shift the research focus for language-interactive UAV control from traditional “flying far”
paradigms—centered on long-horizon path planning—toward “flying better”, which emphasizes
short-range, fine-grained trajectory control. To realize this, we integrate an imitation learning
framework into UAV control, enabling more precise and refined flight behaviors by mimicking the
patterns of expert pilots. To support this paradigm, we introduce a large-scale, real-world benchmark
for language-conditioned UAV imitation learning. We formalize the task setting and introduce a
real-world dataset collected by professional UAV pilots, complemented by a simulation dataset for
systematic evaluation under the Flow paradigm.

2.1 Flow Task Definition

To explore the “flying better” problem, we formalize a task that aligns language instructions with
fine-grained, short-range flight execution—emphasizing visually grounded interactions and simple,



human-like maneuvers (e.g., orbiting or passing around obstacles). We introduce the Flying-on-a-
Word (Flow) task setting, which evaluates a UAV agent’s ability to translate language instructions
into precise and dynamically feasible flight actions. Each Flow task instance provides the UAV with
three modalities at every time step: a natural language instruction I, the UAV’s 6-DoF state S;, and
an egocentric visual observation O;. The agent is expected to generate UAV action sequence that
reflects the intent of the instruction while satisfying dynamic feasibility, thereby emulating maneuvers
characteristic of expert pilots. To this end, we define the policy function:

mo 1 (S, O, I) = ay, ey

where a; denotes the low-level control action executed at time ¢. Over the full execution of the in-
struction, the agent produces a sequence of control actions: A = {a1, as, ..., ar}, which collectively
constitute the agent’s response to the given instruction I.

We identify two core capabilities essential for completing the Flow task: motion intent understanding
and spatial context grounding. The former refers to the UAV’s ability to interpret and execute
basic flight behaviors, while the latter involves integrating visual perception with scene semantics to
produce environment-aware trajectories.

Following this formulation, we define two instruction types: primitive motion commands and object-
interactive commands. Primitive commands (e.g., takeoff, translation, rotation, diving) evaluate the
agent’s ability to follow basic motion directives. Object-interactive commands (e.g., approaching,
orbiting, passing through, hovering) assess its capacity for perception-driven spatial reasoning. We
present illustrative examples of trajectories corresponding to representative instructions in Fig. 3]

2.2 Real-World Data Collection

This section outlines the data collection and annotation pipeline used to construct the UAV-Flow
dataset, as summarized in Fig. [Z_f}
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Figure 4: Real-world UAV data collection pipeline.

High-Quality Trajectory Collection. We collect a real-world language-conditioned UAV control
dataset to support the Flow task, focusing on precise execution, perceptual alignment, and behavioral
diversity. This data forms the foundation for subsequent instruction annotation and model training.

We conduct data acquisition across three university campuses spanning 5.02 km?. Each campus serves
as a compact urban environment containing varied semantic elements such as pedestrians, vehicles,
vegetation, buildings, and other landmarks, enabling rich visual contexts for diverse flight behaviors.
All flights are manually operated by certified UAV pilots, each with over 800 hours of experience.
We use commercial-grade platforms, such as the DJI Mavic 3T RTK, equipped with 4K cameras and
RTK GPS modules, providing high-resolution first-person view video and centimeter-level trajectory
accuracy—both essential for trajectory reconstruction and multimodal alignment.

To guide flight execution, we curate a set of instruction templates spanning two categories: (1)
primitive motion commands (e.g., takeoff, shift, rotate), and (2) object-interactive behaviors (e.g.,
“orbit around a car”, “hover beside a landmark™). Pilots operate exclusively from the UAV’s first-
person view to ensure consistency between recorded inputs and model perception.

To enhance behavioral diversity, each instruction is executed from multiple starting positions. For
example, the command “pass the car from the left” may begin from different relative angles, requiring
the pilot to adapt trajectories while preserving semantic intent. This strategy-level variation enriches
the dataset with functionally equivalent but visually diverse executions.



All flights are synchronously recorded with onboard video and complete flight logs, producing
high-fidelity trajectories paired with visual observations for downstream annotation and learning.

Trajectory-Visual Alignment. Aiming for precise matching between images and flight paths, we
synchronize raw flight logs with their corresponding aerial videos to construct frame-level pairs.
Using timestamps, we align each 6-DoF state—including GPS coordinates (latitude, longitude,
altitude) and orientation (roll, pitch, yaw)—with the associated video frame via linear interpolation.
For ease of fine-grained trajectory control, we transform global GPS coordinates into a local Cartesian
coordinate system centered at the trajectory’s starting position. Relative orientation is also computed
with respect to the initial frame to capture heading dynamics. We uniformly sample the video at 5
Hz and pair each frame with its aligned UAV state, resulting in a high-quality sequence of visual
observations and corresponding flight poses suitable for downstream learning and annotation.

Language Instruction Annotation. We organize a large-scale annotation team to review and label
the flight videos. Annotators first filter out video segments with ambiguous or incoherent flight
behavior. For the remaining valid clips, they compose precise and concise language instructions
that describe the UAV’s movement and its relation to the scene context. To enrich the diversity of
language instructions and support both fixed-form and open-form instruction understanding tasks, we
introduce a language diversification mechanism powered by large language models (LLMs). We first
construct a Fixed Command Set with standardized descriptions for each task category, e.g., all “side
traversal” tasks are labeled as “fly through the right side of the object.” We employ GPT series [24]
models to enrich the base instructions, thereby creating an Open Vocabulary Command Set that
includes diverse expressions.

Finally, we integrate language instructions, visual frames, and synchronized UAV flight states to
construct our comprehensive language-vision-action multimodal dataset, UAV-Flow, designed to
support fine-grained control tasks in real-world UAV scenarios.

2.3 Simulation Dataset under Flow Paradigm

To establish a unified evaluation benchmark, we follow the principles of Flow task and construct
a simulation dataset named UAV-Flow-Sim within a UE-based campus environment. We utilize
UnrealCV [16, 25] as the simulation environment for the UAV, controlling its motion through the
control interface provided by the simulator. This control scheme closely mimics the position-mode
control used in real-world UAV remote controllers, ensuring high fidelity to actual flight behavior.
Moreover, Unreal CV supports a variety of placeable and movable interactive objects (e.g., humans,
cars, quadruped robots), enabling the simulation of rich object interactions during data collection.

During the construction of the simulation dataset, we adopt a hybrid strategy. On one hand, human
pilots manually collect flight trajectories by actively locating landmarks in the simulated environment.
On the other hand, we leverage structured information available in simulation to implement rule-
based data collection. Specifically, the UAV can perform distance-constrained maneuvers guided
by its ground-truth state or using the target position within the scene to construct simulated data.
We follow the same standardized pipeline as real-world data collection to construct the simulation
dataset. Despite this, simulation environments still exhibit discrepancies from the real world in both
visual perception and flight control dynamics. Therefore, we primarily use simulated data in virtual
environments for model validation and analysis, while real-world UAV data is employed for training
and deploying models in real-world scenarios.

2.4 Data Analysis

We construct two datasets based on the Flow paradigm: the UAV-Flow real-world dataset and the UAV-
Flow-Sim simulation dataset. The real-world dataset contains 30692 flight trajectories categorized
into 8 major motion types, each exhibiting diverse trajectory patterns. The distribution of motion
types is shown in the left part of Fig.[5] We also provide a visual comparison between our dataset and
prior VLN [5]] dataset, highlighting the key distinctions—the long-horizon, discrete actions, and non-
dynamic simulation in traditional VLN tasks versus the short-range, fine-grained, and dynamically
realistic execution in Flow task. The UAV-Flow-Sim dataset includes 10109 trajectories, built by
referencing the typical actions in the real-world dataset and leveraging information accessible in
simulation environments. The motion type is presented on the right of Fig.[5] Given that the Flow
task emphasizes short-range, fine-grained control, most trajectories are within 20 meters in length,
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Figure 5: Dataset statistics for UAV-Flow and UAV-Flow-Sim. We show the distribution of task
types (by percentage) and trajectory distances across both datasets.

as illustrated in the center of Fig.[5] Notably, due to the inclusion of instructions such as in-place
rotations, there remains a frequency of trajectories with near-zero displacement. Additionally, we
construct a simulation test set including 273 annotated trajectories, covering all major action types in
the simulation dataset, to facilitate systematic evaluation on the Flow task.

3 Flying-on-a-word (Flow) Colosseo

In this section, we introduce how to construct a Colosso—a unified “arena” for deploying and
comparing UAV control algorithms in both real-world and simulated environments. To this end, we
present a real-world UAV deployment strategy that enables large-scale model execution, along with a
simulation-based evaluation suite designed for systematic comparison within the same task setting.

3.1 Real-World Ground-Drone Collaborative Deployment of Large-Scale Models

Limited onboard compute makes it infeasible to deploy large models directly on UAVs. Unlike
stationary platforms, UAVs require lightweight, real-time control pipelines. As shown in Fig. [6]
we adopt a ground-drone collaborative strategy, where the UAV streams FPV video and state data
(via RTSP and MAVROS), and a ground station performs inference and returns low-level control
actions over a wireless link. This setup introduces perception-action latency, which is particularly
problematic for fast, continuous motion. Existing strategies include: (1) Stop-and-Infer, where the
UAV pauses during inference but breaks task continuity; and (2) Continuous Motion, where the UAV
continues moving but may suffer from delayed responses and control mismatch. To overcome these
limitations, we propose a Globally-Aligned Continuous Motion scheme with a look-ahead mechanism
for chunk-wise action prediction. Predicted target points are fused with the current UAV state to yield
global poses. We further filter out already-passed targets based on UAV motion delay, improving
control stability and execution accuracy under real-time constraints.

3.2 Closed-Loop Simulation Evaluation Metric

To evaluate the model’s capabilities on Flow tasks, we develop a closed-loop simulation testing
environment. We employ two metrics to evaluate the performance of baseline models: Success Rate
(SR) and Normalized Dynamic Time Warping (NDTW) [26]. For each evaluation, we record the
predicted trajectory and target point, render 2D and 3D visualizations, and determine the success rate
based on manual inspection of whether the trajectory semantically satisfies the instruction. Notably,
some trajectories may be considered semantically correct yet follow suboptimal or irregular paths. To
address this, we also compute NDTW to assess the similarity between the predicted and reference
trajectories. In our implementation, we represent each trajectory point as a 6D vector by concatenating
the position (X, y, z) with the cosine values of the orientation (roll, yaw, pitch), thereby capturing the
influence of both position and orientation.
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Figure 6: Real-world UAV deployment of large-scale models. UAV streams visual input and state
to a ground station for inference, receiving control commands in return for real-time flight execution.

4 Experiments

We present a comprehensive experimental analysis of the UAV-Flow benchmarks. We adapt recent
VLN and VLA methods to the Flow setting and evaluate them in the simulator. The selected methods
are validated on the real-world UAV-Flow dataset and demonstrate real UAV deployments.

4.1 Benchmark Methods

We build our UAV-Flow benchmark upon representative model paradigms from recent VLN and VLA
literature, and design task-specific adaptations to enable their effective use in UAV fine-grained control
scenarios. Given the task discrepancy—where VLN models are designed for long-horizon navigation
and VLA models for grounded robotic manipulation—we structurally modify and reconfigure these
models to meet the unique demands of the Flow setting. The resulting models form a unified and
extensible evaluation suite for benchmarking language-guided UAV imitation learning.

VLN Models. We first apply models originally designed for VLN tasks and adapt them to Flow
tasks. Specifically, we adopt Seq2Seq [10] and CMA [21] as classical base models. Seq2Seq is a
recurrent model that fuses image, instruction and previous action via a GRU to predict navigation
actions. CMA uses a bidirectional LSTM to jointly encode image, instruction and previous action,
and employs a cycle-attention mechanism to enhance performance. To adapt the models to our Flow
task, we modify their original classification-based outputs over fixed discrete actions into continuous
UAV pose regression. The resulting adapted versions are referred to as Seq2Seq-UAV and CMA-UAV.
We also adopt the Travel [7] model, which is built upon the MLLM architecture for processing
visual observations and textual inputs. By restructuring the input text to integrate both UAV state
information and language instructions, and modifying the output to directly predict UAV poses from
the fused feature, we obtain the adapted model termed Travel-UAV.

VLA Models. We draw inspiration from recent advances in robotic manipulation and adopt Open-
VLA [22] and Pi-0 [23] as base VLA models for Flow task. For OpenVLA, we retain its single-frame
visual input design by feeding in the current image frame, while organizing the UAV state and
instruction into a unified text input. The action space is discretized into 256 tokens, and the model
predicts 6-DoF poses via token outputs. The adapted version is referred to as OpenVLA-UAV. For
Pi-0, which supports multi-frame inputs, we use the first frame of each task as a reference and
concatenate it with the current frame as visual input. The instruction and UAV state are encoded
separately, and the model outputs a 6-DoF action chunk using a flow matching [27] mechanism. The
adapted model is referred to as Pi-0-UAV. Further details of models are provided in Appendix
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4.2 Results

We evaluate models on both the Fixed and Open Vocabulary Command Sets in a closed-loop
simulation environment, as shown in Fig.[7]and Fig.[8] We observe that the VLN models, Seq2Seq-
UAV and CMA-UAYV, perform poorly on the Flow task. These models were originally designed
for VLN over a discrete action space. When adapted to pose-level regression, they struggle to
effectively fuse multimodal inputs for accurate pose prediction. Furthermore, due to their RNN-based
architecture, the predicted trajectories tend to inherit the previous motion direction, often resulting in
drifted or curved paths. These models also have difficulty predicting proper stopping points, causing
the agent to continue moving indefinitely even after reaching the intended goal. These issues can be
more clearly observed in trajectory visualizations in Appendix [A]

Travel-UAV model differs from traditional VLN models by generating pose-level outputs directly from
current-frame visual inputs, making it more suitable for the Flow task. It demonstrates strong motion
intent understanding capabilities, effectively performing primitive motion instructions. However,
built upon the LLaMA-VID architecture, it encodes vision into only 17 tokens, limiting its ability
to capture fine-grained visual semantics such as “turn to face the target”.
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Pi-0-UAV also demonstrates strong visual understanding and performs well in object-interactive
tasks. However, constrained by the flow-matching training paradigm, it exhibits relatively weaker



Figure 9: Visualization of real-world UAV flight demos. We deploy Pi-0-UAV, trained on UAV-Flow,
on a real UAV and visualize the resulting flight trajectories alongside third-person dynamic views.

performance on fine-grained motion intent instructions, as the flexible specification of distances and
angles imposes higher demands on its semantic alignment capabilities—especially under limited
training data. Additionally, its denoising-based inference mechanism may introduce slight fluctuations,
compromising trajectory stability.

In summary, we observe that traditional VLN models are primarily designed around fixed and long-
horizon action sequences, making them less suitable for the Flow task. Travel-UAV shares a similar
paradigm with VLA models by generating waypoints from current visual inputs, but its limited
capacity for fine-grained visual understanding hinders its performance in certain interactive tasks. In
contrast, VLA models, originally developed for robotic manipulation tasks, demonstrate strong visual
understanding and fine-grained control, leading to better performance in Flow task. Furthermore, we
observe that training with the open vocabulary command set does not lead to an overall decrease
in success rates for models like OpenVLA-UAV and Pi-0-UAV. Instead, it enhances their language
generalization and even improves performance on certain tasks.

4.3 Real-World Deployment

Due to the safety constraints of UAV flight and the variability of outdoor environments, it remains
challenging to adopt quantitative evaluation metrics in real-world scenarios. Nevertheless, we aim to
verify the deployability of our model under real-world conditions. To this end, we draw upon the
validation results from the simulation environment, and train the Pi-0-UAV model on the UAV-Flow
real-world dataset. Deployment is conducted via our proposed ground-drone collaborative framework.
The action chunk outputs of Pi-0-UAYV integrate effectively with our look-ahead mechanism, enabling
smooth and delay-free continuous flight control. In Fig.[9] we present representative flight examples
and visualize the 3D trajectory sequences generated by the model, demonstrating its capability to
execute actions accurately in real-world conditions.

5 Related Work

Language-Guided UAV Tasks. Most existing language-guided UAV tasks fall under the VLN
paradigm [5, 16, [7, [29]], adapting navigation strategies from ground agents and focusing on high-level
path planning. Aerial VLN [5]] provides sequential instructions for navigating long trajectories using
discrete actions (e.g., move forward, ascend). CityNav [6] shifts toward goal-directed search but still
relies on fixed action sets and long-range plans. Travel [[7] introduces waypoint-level supervision
for more realistic control but still depends on external assistance for extended tasks. In contrast,
language-guided low-level UAV control, which focuses on how UAVs react in real time to simple,
fine-grained commands, remains underexplored. To address this gap, we propose the Flow task,
which studies dynamic, low-level UAV behaviors grounded in natural language.

Simulation vs. Real-World UAV Datasets. Simulation environments [[15} [16} 25/ 130] are widely
used in UAV research for their low cost, controllability, and ease of annotation. However, most UAV
VLN datasets ignore flight dynamics, often collecting data from fixed drone positions. Some works
simulate continuous motion using Unreal Engine with plugins like AirSim [[15]] or UnrealCV [16],
but these setups still lack realistic flight dynamics and complex scenes. Meanwhile, real-world UAV
datasets mainly focus on perception tasks [31}, 32} 33|34} 135], with limited work on language-driven



dynamic control. To fill this gap, we collect a real-world language-vision-action dataset under the
proposed Flow task and build a simulation system for controlled evaluation and benchmarking.

6 Conclusion

In this work, we introduce UAV-Flow, a novel benchmark designed to explore how imitation learning
can enable UAVs to interpret language instructions and execute fine-grained dynamic motions. To
support this effort, we collect a real-world dataset with 30k flight trajectories, covering a diverse range
of motion types and environmental conditions. We further propose a ground-drone collaborative
deployment framework that enables an end-to-end pipeline from data collection to model training
and real-world UAV deployment. Additionally, we develop a complementary closed-loop simulation
suite to facilitate systematic evaluation of model performance on the Flow task.

Limitations. Several limitations remain and warrant further exploration. On one hand, due to
practical constraints such as flight safety and environmental variability, it remains challenging to
conduct systematic real-world experiments and establish consistent evaluation metrics. In future
work, we aim to develop a safer and fully closed-loop real-world evaluation framework to support
comprehensive performance assessments. On the other hand, our current efforts primarily focus on
short-range motion control within visual range. Integrating fine-grained short-range execution with
long-horizon planning is a key challenge toward building truly intelligent, language-driven UAV
systems, and will be a major direction for future research.
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A Trajectory Visualization of Experimental Results

As shown in Fig.[T0} We project the flight trajectories onto a 2D plane from a bird’s-eye view and
visualize examples for both object-interactive and primitive motion tasks. Overall, Seq2Seq-UAV and
CMA-UAV struggle to interpret the motion semantics of the instructions, while Travel-UAV appears
to learn fixed instruction-action mappings. In contrast, OpenVLA-UAV and Pi-0-UAV demonstrate
stronger visual perception and motion capabilities, achieving more accurate instruction execution.

B Model Structure

As shown in Fig.[TT} We adapt and modify existing VLN and VLA models in detail to support the
proposed Flow task.

For the Seq2Seq and CMA models, we replace their original discrete action classification outputs
with continuous UAV pose regression. We also restructure the dataloader to match this formulation
and adopt an MSE loss for training. While we experiment with incorporating the current UAV
state (position and orientation of the UAV relative to the coordinate system of the first frame) as
an additional encoded input concatenated with image and language features, we find that this leads
to worse trajectory performance. As a result, we retain the original input design and construct the
adapted versions named Seq2Seq-UAV and CMA-UAV.

For the Travel model, we preserve its visual encoder and modify the text input to integrate both UAV
state and language instruction into a unified prompt. We also fine-tune the prompt template as shown
in Fig.[T2] On the output side, we modify the model to directly generate a sequence of 6-DoF UAV
poses, resulting in Travel-UAV.

For the OpenVLA model, we align the data format with its original setup used for robotic manip-
ulation, and incorporate both state and instruction information as the textual input as illustrated
in Fig.[T2] This differs from the original design that used only instruction input. We maintain its
single-frame visual input design and preserve the discrete 256-token-based prediction format for
UAV poses prediction. This adapted version is referred to as OpenVLA-UAV.

For the Pi-0 model, we preserve its multi-frame visual input paradigm. Although the original Pi-0
uses multi-view images, our dataset contains only UAV FPV images. We address this by treating
the first frame as a "reference frame" and combining it with the current frame for multi-frame input,
suitable for short-range tasks. Additionally, we retain Pi-0’s language and state encoders and train the
model using the flow matching paradigm with a chunk size of 10. The resulting version is denoted as
Pi-0-UAV.
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Figure 10: Visualization of experimental trajectories. We show representative examples from two
categories: blue trajectories correspond to object-interactive tasks, while red trajectories illustrate
primitive motion tasks.

C Training Implementation

We design a corresponding training strategy for each baseline model, minimising changes to the
training settings in the original paper to ensure fairness and validity of the comparison.

Parameter Value
Batch Size 32
Epochs 10
Learning Rate le-4
GPU 1 x RTX 4090

Table 1: Seq2Seq-UAV and CMA-UAV training

config.

D Inference Latency of Models

Parameter Value
Epochs 2
Batch Size 32
Max Learning Rate Se-4
LoRA True
LoRA Rank 32
GPU 8 x A100

Table 2: Travel-UAV training config.

We measure the inference time of different models, covering the full pipeline from image input
processing to trajectory generation. This provides a comprehensive reflection of the models’ latency
in real-world deployment. Notably, we set the Pi-0-UAV model to output an action chunk size of 10,
allowing it to predict actions for 10 future time steps per inference.
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Figure 11: Adapted model architectures. We modify representative VLN and VLA models to
support the requirements of Flow tasks.

ﬁ OpenVLA-UAV Prompt
In: Current State: {state},
What action should the uav take to {instruction} ?
Out:

} Travel-UAV Prompt }

A chat between an user and an intelligent UAV agent. The agent output the UAV
pose according to the user's instructions.
USER:
Current state: {state}
Current image: <image>
Instruction: {instruction}
AGENT:

Figure 12: Prompt templates for different models. We illustrate how prompt formats are structured
for OpenVLA-UAV and Travel-UAV.

Parameter Value
Parameter Value Batch Size 16
Batch Size 32 Epochs 12
Learning Rate Se-4 Learning Rate Se-5
LoRA True LoRA Enabled True
LoRA Rank 32 LoRA Rank 32
Max Training Steps 200000 Horizon Steps 10
GPU 8 x A100 GPU 8 x RTX 4090

Table 3: OpenVLA-UAV training config. Table 4: Pi-0-UAV training config.

E UAV Hardware Setup

The UAV deployment platform is equipped with a complete set of hardware components, featuring a
wheelbase of 600 mm and a payload capacity of approximately 3.7 kg. It integrates a LIDAR sensor
and a gimbal camera for environmental perception. To achieve high-precision localization, the system
includes an RTK module, a GPS module, and a dual-antenna GNSS setup. Onboard computation
is powered by an NVIDIA Jetson Orin NX module, which supports the execution of lightweight
models and flight control. RTK communication and the deployment of larger models are managed
via a mobile ground station equipped with high-performance computing capabilities.
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Model Inference Latency (s)

Seq2Seq-UAV 0.057
CMA-UAV 0.067
Travel-UAV 0.188
OpenVLA-UAV 0.172
Pi-0-UAV 0.289

Table 5: Inference latency of different models.
Average forward-pass time on a RTX 4090 GPU. form in real-world operation.

F Human Annotation and Flight Labor Cost

To support high-quality data collection and annotation, we hire experienced UAV pilots and profes-
sional annotators. Each pilot is responsible for operating UAVs in complex environments, executing
flight instructions in Flow tasks. Annotators are tasked with reviewing, verifying, and correcting
video-instruction pairs to ensure semantic alignment and accuracy. We pay both UAV pilots and
annotation personnel $100 per hour. This rate is aligned with industry practices for skilled technical
labor in robotics and machine learning data pipelines.
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